
Behavioral/Cognitive

Value Signals in the Prefrontal Cortex Predict Individual
Preferences across Reward Categories
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Humans can choose between fundamentally different options, such as watching a movie or going out for dinner. According to the utility
concept, put forward by utilitarian philosophers and widely used in economics, this may be accomplished by mapping the value of
different options onto a common scale, independent of specific option characteristics (Fehr and Rangel, 2011; Levy and Glimcher, 2012).
If this is the case, value-related activity patterns in the brain should allow predictions of individual preferences across fundamentally
different reward categories. We analyze fMRI data of the prefrontal cortex while subjects imagine the pleasure they would derive from
items belonging to two distinct reward categories: engaging activities (like going out for drinks, daydreaming, or doing sports) and snack
foods. Support vector machines trained on brain patterns related to one category reliably predict individual preferences of the other
category and vice versa. Further, we predict preferences across participants. These findings demonstrate that prefrontal cortex value
signals follow a common scale representation of value that is even comparable across individuals and could, in principle, be used to
predict choice.
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Introduction
Life can be seen as a series of decisions. Often, comparisons have
to be made between qualitatively very different options, such as
going on a vacation or buying a car. Following the utility concept
put forward by utilitarian philosophers and used by economists,
it has been suggested that the brain performs decisions between
such dissimilar options by assigning a value to each of them,
which is mapped on a common scale of desirability regardless of
the specific type of option (Montague and Berns, 2002; Fehr and
Rangel, 2011; Levy and Glimcher, 2012). In line with the hypoth-
esis of a common scale of subjective value, human functional
magnetic resonance imaging (fMRI) studies have observed an
overlap of value-related signals in the medial prefrontal cortex
(mPFC) for different types of reward, such as consumer goods,
monetary rewards, and also social rewards (Chib et al., 2009;
FitzGerald et al., 2009; Lebreton et al., 2009; Smith et al., 2010;
Kim et al., 2011; Levy and Glimcher, 2011; Lin et al., 2012). Fur-
ther, it has been demonstrated that value signals for money and
food options do not only spatially overlap, but that equally pre-
ferred money and food options elicit comparable BOLD re-

sponses in the mPFC both univariately (Levy and Glimcher,
2011) and multivariately (McNamee et al., 2013).

In this study we want to rigorously test the common scale
hypothesis on three different grounds. First, if there is a common
neural code for value, this should also be the case for goods that
are rarely traded, rarely used as substitutes, and whose value can-
not be easily expressed in monetary terms. Second, abstract value
signals should be detectable in the absence of a monetary evalu-
ation task. Third, if humans employ the same, possibly innate,
coding mechanism for value, value signals should be comparable
across individual participants.

We therefore use multivariate analysis of fMRI data and test
whether it is possible to predict individual preferences across
fundamentally different categories in the absence of monetary
evaluation. In contrast to univariate analysis, multivariate analy-
sis of fMRI data allows exploring whether value signals are not
only spatially overlapping, but also encoded in a similar way,
which is a prerequisite for a common scale representation. As
reward categories, we chose snack foods and engaging activities
because they differ fundamentally with respect to the sensory
and motivational systems involved. Snack foods (like donut,
cheesecake, chocolate etc.) constitute primary rewards that
serve energy intake and are directly linked to gustatory per-
ception, whereas the engaging activities serve the pursuit of
secondary goals as diverse as socializing, relaxing, fitness, and
culture (like going out for drinks, daydreaming, playing ten-
nis, visiting a museum). In addition, these activities are rarely
traded and it is therefore unlikely that subjects associate a
monetary value with them.
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Materials and Methods
Subjects and task
Eight healthy subjects (5 female, 3 male, age 25–30 years) without prior
history of psychiatric or neurological disorders participated in the study.
All subjects gave their written informed consent before participation and
the study protocol was approved by the Ethics Committee of the Faculty
of Psychology and Neuroscience, Maastricht University. Subjects were
asked to refrain from eating for 4 h before the experiment.

During functional imaging, subjects were asked to imagine the plea-
sure they would derive from (1) eating different snack food items (e.g.,
potato chips, a blueberry muffin, or chocolate ice cream) or (2) engaging
in different activities (e.g., listening to music, having a nap, or window
cleaning). There were 60 items per category (see below). Items were
presented in written form and random order to each subject for three
seconds separated by a variable intertrial interval of 10 –14 s (Fig. 1A).
Each item was presented two times over the whole fMRI session.

Immediately after scanning, outside the scanner, subjects made a series
of hypothetical binary choices. In total, 500 item pairs were presented,
both within and across categories with the instruction to choose the item
that would yield more pleasure to the participant right now. This choice
data were used to infer a preference ranking over all 120 items. We refer
to these ranks as observed subjective values. After the binary choice task,
participants rated their imagined pleasure for each item using a visual
analog scale (Fig. 1B). This allowed us to validate the preference ranking
obtained from the binary choice task. Consistency across these two pref-
erence measures was high (Pearson’s correlation ranged between r � 0.75
and r � 0.92).

Stimuli
Sixty items per category were presented to the participants. Both catego-
ries were constructed such that they included items that were potentially
liked a lot, but also items that may be disliked. As activities we used for
example “playing tennis,” “jogging,” “listening to music,” “observing
animals,” “daydreaming,” “sitting in a park,” “fixing a bike,” “cleaning
windows,” and “taking an exam.” Examples for snack foods are “crois-
sant,” “waffle,” “blueberry muffin,” “chocolate cookie,” “wasabi nuts,”
“paprika potato chips,” and “salmiak.” The full list of items is available
from the authors upon request.

MRI data acquisition
Measurements were performed on a 3T TIM
Trio scanner (Siemens). Functional responses
were measured in four independent runs using
a whole brain standard gradient echo EPI se-
quence (GRAPPA � 2, TE � 30 ms, slices �
32, TR � 2000 ms, FOV � 192 � 192 mm 2,
voxel size � 3 � 3 � 3 mm 3). A T1-weighted
magnetization prepared rapid acquisition gra-
dient echo (3D-MPRAGE, GRAPPA � 2, TR:
2050 ms, TE: 2.6 ms, FOV: 256 � 256 mm 2, flip
angle: 9°, 192 sagittal slices, voxel size: 1 � 1 �
1 mm 3) anatomical dataset was acquired for
coregistration, segmentation and visualization
of the functional results.

MRI data analysis
Functional and anatomical images were ana-
lyzed using BrainVoyager QX (Brain Innova-
tion) as well as custom code in R (R
Development Core Team, 2008). Preprocess-
ing of the functional data included interscan
slice-time correction, rigid body motion cor-
rection, as well as temporal filtering using a
Fourier basis set of five cycles per run. The
functional data were then coregistered with
the individual anatomical scan and trans-
ferred into Talairach space (Talairach and
Tournoux, 1988). Anatomical data were seg-
mented to identify gray matter for mask gen-
eration. All multivariate fMRI data analysis

was performed on a single subject level and was restricted to an ana-
tomically defined gray matter mask (Fig. 2) entailing each subject’s
entire frontal cortex (corresponding to Brodman areas 9 –13, 25, 32,
33, 46, 47). For comparison, univariate analysis was performed using
the postscanning observed subjective value as a linear parametric
modulation of hemodynamic response.

Multivoxel pattern analysis
Feature creation. Each item was presented twice during scanning to im-
prove data reliability. Functional data for each individual item was aver-
aged across the two trials in which it was presented. Thus, for each item
we obtained a single time course from each voxel by averaging across the
two trials. This time course for each voxel was then collapsed across
functional volumes to obtain the set of predictors (feature sets) for the
model. Because participants did not perform any actions during fMRI
but were instructed to just imagine subjective pleasure, it can be expected
that the individual onset and duration of the BOLD response vary with
participants. Therefore, for each subject multiple feature sets were cre-
ated by computing the mean of the raw fMRI signal for slightly jittered
time intervals. These time intervals differed with respect to the start-
point after stimulus onset (1– 4 volumes in steps of 1) and the length of
the time interval (1–3 volumes in steps of 1). Thus 12 different feature
sets were created for each participant (Fig. 3A).

Feature set selection. To select the best time interval for the final anal-
ysis, we evaluated model performance within one category for each fea-
ture set individually for each participant. For each feature set, recursive
feature elimination (RFE) was used to reduce the number of voxels by
75%. Two linear support vector regression models (�-SVR) were recur-
sively fitted to the data. One model was fitted using all snack food items,
the other one using all activity items (Fig. 3B).

RFE was performed following Duan et al. (2005). In each RFE step, the
dataset was randomly split into 10 mutually exclusive subsets (10-fold).
In each subset, an �-SVR was fitted to the data. Weight scores of the
features were obtained and aggregated across the 10 subsets to stabilize
the feature ranking (multiple SVM-RFE; Duan et al., 2005). Based on the
aggregated feature ranking the 250 voxels with the lowest ranking scores
were eliminated. For each model, this procedure was repeated until the
25% most informative voxels remained. Thus, multiple SVM-RFE was
used to optimize the snack food model in predicting the value for other

A B

Figure 1. Experimental Procedure. A, In the scanner participants were presented with 60 different activities and 60 different
snack foods in written form, each presented for three seconds with the instruction to imagine how much pleasure they would
derive from it. Each item was presented twice, resulting in 240 trials. B, After scanning, participants made 500 binary choices
between the presented items followed by a rating task in which they rated each of the 120 items on a visual analog scale.
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snack foods and the activity model in predict-
ing the value for other activities. For each par-
ticipant, the time interval underlying the
feature set that yielded the highest mean per-
formance of these two models was ultimately
used for across-category predictions.

As within-category prediction performance
is not the main focus of this paper, we do not
report within-category performance measures,
but only across-category performance. This
approach circumvents any biases resulting
from two-stage selection procedures that first
pick the best-performing feature set and then
fit a final model using the same data (Krieges-
korte et al., 2009; Vul et al., 2009).

Final model. Across-category performance
was calculated at the very end of the analysis
and was thus not part of any two-stage selec-
tion procedure. The SVR model trained on
snack food items was used to predict the pref-
erence ranking over activities and vice versa
(Fig. 3C). Training and testing set were there-
fore entirely independent. Correlations be-
tween the observed preference ranks and
predicted ranks were calculated to assess pre-
diction accuracies between categories for each
subject.

Permutation testing. Permutation testing
was used to assess the statistical significance of
the correlations between predicted and ob-
served preference ranks. For each permutation,
labels (in our case the rank-value) were ran-
domly reassigned to the features. The data with
permuted labels was then treated in exactly the
same way as the original data. That is, the same
multiple SVM-RFE procedure was used to re-
duce the number of voxels to the 25% most
informative (within-category). On these vox-
els, the final model for across-category predic-
tions was trained. This procedure was repeated
2000 times, yielding 2000 correlations between
predicted and observed preference ranks based
on randomly assigned rank-value. The p value
for the actual correlation was determined
based on this distribution.

Across subject models. For the across subject
predictions we fitted one SVR model for each
participant using all items ignoring item cate-
gory (120 examples). Each SVR was then used
to predict preferences over all items for the
other seven participants, respectively. To not
amplify the already existing differences in brain
anatomy across participants, data were not fur-
ther reduced by RFE for across subject predic-
tions. Instead, all voxels in the individual
frontal cortex mask were used.

Support vector regression machine. We used
LIBSVM’s (Chang and Lin, 2011) � support
vector regression machine as implemented in
the ‘e1071’ library in R. Whenever a SVR was
fitted to the data it was first tuned with respect
to the cost and � parameter using tenfold cross-
validation. For better interpretation of the fea-
ture weights a linear kernel was used.

Results
To test whether subjective value of snack foods and activities is
represented on a common scale, we assessed whether similarly

liked snack foods and activities evoke similar brain patterns.
Therefore, after an SVR model was trained on one category of
items (e.g., snack food), it was used to estimate the subjective
value for items from the other category (e.g., activities). For each

Figure 2. Frontal cortex masks. Anatomically defined gray matter mask including Brodman areas 9 –13, 25, 32, 33, 46, and 47
used in this study for each subject.

A

C

B

Figure 3. Multivoxel pattern analysis. Figure illustrating the steps of the main multivoxel pattern analysis used in this study. A,
Twelve feature sets of different time intervals were created for each participant. B, Recursive feature elimination (RFE) was used
within each category for each feature set to obtain the 25% most informative voxels. C, The feature set with the highest within-
category performance was used to perform across category predictions by training a model on one item category (e.g., snack foods)
and using it to predict preferences over items of the other category (e.g., activities) and vice versa.
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subject, we assessed each model’s estimation performance in
these across-category estimations by correlating the estimated
subjective values with the observed subjective values obtained
from the binary choices after scanning. Figure 4A illustrates these
correlations for an exemplary subject.

Statistical significance was determined individually for each of
these correlations based on permutation testing. Fourteen of 16
individual correlations were significantly higher than expected by
chance on the 5% significance level. Figure 4B shows the estima-
tion performance of each model for each participant. On average,
estimated subjective values of activities, obtained by an SVR
model trained on snack food items, correlated with observed
subjective values by r � 0.31 (Pearson’s correlation, t(7) � 6.1,
p � 0.001, one sample t test). Likewise, using the SVR model
trained on activities, correlations between estimated and ob-
served subjective values for snack food items reached an average
of r � 0.36 (Pearson’s correlation, t(7) � 6.6, p � 0.001, one
sample t test). These correlations demonstrate that value-related
brain patterns are similar across categories.

As mentioned above, each item was presented twice during
scanning and BOLD signals were averaged over presentations.
We additionally analyzed each presentation set independently to
investigate any systematic differences between the first and sec-
ond presentation. For that we trained a model on BOLD signals
recorded during the first presentation of each item from one
category (e.g., snack foods) and used it to predict the value based
on BOLD signals that were recorded during the first presenta-
tions of items from the other category (e.g., activities). We then
compared this to the prediction accuracy of models that were
trained on the second presentation of each item. Prediction per-
formance was slightly lower when using the second trial (second
presentation: mean r � 0.27, first presentation: mean r � 0.33,
Pearson’s correlation), presumably due to adaptation of the
BOLD response or subjects’ fatigue. However, in a regression
analysis with prediction accuracy (correlations) as the dependent
and a dummy variable coding for first versus second presentation
and a dummy coding for whether the model was trained on snack
foods (predicting activities) or activities (predicting snack foods),

the difference between first and second presentation was not sig-
nificant (coefficient � �0.06, t(29) � �1.01, p � 0.32).

Predicting choices
The estimated subjective values should not only carry informa-
tion about which of two items will be preferred, but also about
how strong the preference is. This can be tested by computing
how well subjects’ actual choices in the binary decision task can
be predicted by using the estimated subjective values obtained
from the brain data. For this, we simply assume that in a binary
choice the item with the higher estimated subjective value will be
chosen over the item with the lower value. Because there is noise
in the estimations, choices between items with a similar estimated
subjective value should be harder to predict correctly than
choices between items where the estimated subjective values are
very different. As shown in Figure 5, the proportion of correctly
predicted binary choices indeed monotonically increased with
the distance between the estimated subjective values of these
items. The prediction accuracies were as high as 81% when sub-
jects chose between items that were classified as highly disliked
and highly liked by the SVR model.

Importantly, to show that the brain indeed encodes value on
one common scale, estimated subjective values need not only be
correlated with observed subjective values, as this merely indi-
cates that items are ordered correctly. In addition, it is necessary
to demonstrate that subjective values are estimated correctly in
an absolute sense. To test for this, we assessed the accuracy of
predicting binary choices that involved a snack food and an
activity item. If estimated subjective values were only ordered
correctly, then the prediction performance in these between-
category choices would be worse than in choices involving only
items from one category. We found that accuracies for binary
choices between the two categories were not significantly differ-
ent from the accuracies within each category (� 2

(2) � 0.41, p �
0.82, Pearson � 2 test). Thus, each SVR model did not only order
items of a category correctly, as indicated by the significant cor-
relations. Additionally, neither model over- or underestimated
the subjective value ranks of the other category systematically,

A B

Figure 4. Estimation performance across reward categories. A, Scatterplots of observed against estimated subjective values for one exemplary subject (Subject 3) for snack foods predicted by a
model trained on preferences over activities (a3 s) and vice versa (s3 a), and (B) correlation coefficients between observed and estimated subjective value for all eight subjects. Numbers identify
the individual subjects; *p � 0.05, **p � 0.01, ***p � 0.001 based on permutation testing.
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which further supports the hypothesis of a common currency of
value.

Pattern and localization of value encoding
The multivariate analysis used in this study identified voxels
which carry information about subjective value. In contrast to
univariate analysis, it is not restricted to detecting aggregate levels
of activity, but can also detect encoding which relies on more
complex patterns. To better understand the pattern that encodes
abstract subjective value, we analyzed the BOLD signal in the
most informative voxels based on our RFE procedure. One pos-
sibility is that informative voxels exhibit increased activity with
increasing subjective value. We therefore correlated the BOLD
signal with observed subjective value. Aggregating across all vox-
els that survived RFE for each subject, average BOLD response
was correlated moderately with subjective value (r � 0.09, Pear-
son’s correlation). On the level of individual voxels, a majority of
voxels (60%) showed a positive correlation but activity levels
correlated with subjective value only with r � 0.04 (Pearson’s
correlation) on average. Another coding characteristic could be
that an increasing number of voxels is activated as subjective
value increases. To test for this possibility, we looked at the num-
ber of voxels contributing to coding of higher valued items. We
first dichotomized each voxel’s activity relative to its median
BOLD value, so that each voxel that survived RFE had either value
one or zero for each item: 0 if the BOLD signal during presenta-
tion of this item was below median signal magnitude of this voxel,
and 1 if the BOLD signal was above the median BOLD value. This
way, we could count how many voxels showed signals above the
median in different observed value ranges. For low valued items
(value rank 1–20), an average 48% of voxels showed a BOLD
signal above the median. This steadily increased up to 53% for
items that were most preferred (value rank 100 –120). On aver-
age, with each increase of 10 value ranks, nine additional voxels
showed BOLD signal above its median (t(48) � 8,7; p � 0.01,
random-intercept regression). Thus, with higher subjective value

an increasing number of voxels showed above-median BOLD
response.

To localize the voxels in the frontal cortex that carry informa-
tion about subjective value regardless of the reward category, we
first identified the most informative voxels in each SVR model.
For each participant, voxels were classified as carrying category-
independent information if they were informative in both mod-
els. In Figure 6 we plot the overlap of these category-independent
voxels across participants, revealing clusters in the ACC and the
medial prefrontal cortex. The map shows only voxels with mini-
mally 25% overlap (minimally 2 participants) and clusters with at
least 162 anatomical (i.e., 6 functional) voxels. The highest over-
lap was observed in a cluster in the anterior portion of the mPFC
with an overlap of 62.5% (5 participants). A list of peak voxel
coordinates of all identified clusters can be found in Table 1.

Surprisingly, among the 25% most informative voxels, there
was no cluster in the ventral part of the mPFC. This region has
been frequently implicated in common value computation in
previous fMRI studies that used univariate data analysis (Levy
and Glimcher, 2012). We therefore performed an additional uni-
variate analysis by fitting observed subjective value to the hemo-
dynamic response function’s estimates in each participant. To
maximize comparability with the multivariate results, we used
the same probabilistic procedure as described above to aggregate
the single subject maps. For each subject, we ranked the absolute
model fits (betas) to reduce the number of voxels considered to
25% of subjects’ frontal cortex mask, thus obtaining the same
number of voxels per subject as resulted from the multivariate
recursive feature elimination procedure. Figure 7 shows the over-

Figure 5. Correctly predicted binary choices, using the predicted subjective values. Bars
show the percentage of correctly predicted binary choices depending on the distance between
the estimated subjective values of two items. The horizontal line shows the accuracy expected
by chance (50%).

Figure 6. Voxel-clusters carrying across-category information based on the weights of the
support vector regression models (Talairach x, y, z � �7, 51, 39) overlaid onto an anatomical
average.

Table 1. Brain regions carrying value-signals across reward categories

X Y Z No. participants No. voxels

Right anterior mPFC 1 61 0 5 231
Right dorsal mPFC 2 52 36 4 204
Right mPFC 5 55 24 3 219
ACC 1 5 29 21 4 162
ACC 2 �7 37 31 4 169
Left dorsal PFC �7 52 36 3 202
Left mPFC 1 �4 55 0 4 214
Left mPFC 2 �6 58 18 3 279
Left anterior PFC �20 61 13 3 195

Clusters are listed if they show an overlap for at least two participants and a cluster size of at least 162 anatomical
(� 6 functional) voxels. No smoothing was applied to the data. Coordinates correspond to Talairach coordinates of
the voxel with the highest overlap across subjects.
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lap of the remaining voxels across subject (minimally 25% over-
lap; i.e., 2 participants). The obtained pattern is comparable to
the multivariate patterns presented in Figure 6, but addition-
ally includes a cluster in the more ventral part of the MPFC.
We would like to stress that this result should be interpreted
with caution because no significance standards were met by
this analysis.

Given the spatial overlap of voxels carrying abstract subjective
value across subjects, we hypothesized that value-representation
across participants could be sufficiently similar to allow predict-
ing subjective value of one person with a model trained on an-
other person. To test this, we trained one SVR model for each
participant, using all 120 items. We then used each participant’s
model to predict the preferences of the other seven participants,
respectively, and correlated these with the observed preferences.
Figure 8 summarizes all of the resulting 56 correlation coeffi-
cients in a boxplot, and also shows the coefficients by individual
subject. Correlations were significantly above zero (t(48) � 3.11,
p � 0.01, random-intercept regression), demonstrating that

value patterns are to some extent comparable, even across sub-
jects. As can be expected, given the anatomical variability across
participants, performance was considerably lower (mean Pear-
son’s correlation r � 0.10) than within individual across-category
performance.

Discussion
We tested whether value signals in the frontal cortex are indepen-
dent of specific reward characteristics and can therefore be used
to infer the subjective value of inherently distinct reward types. A
machine learning algorithm, which was trained only in decoding
subjective value of snack food items, was capable of predicting the
subjective value of engaging activities and vice versa. Hence,
knowing the neuronal pattern that is associated with imagining
the pleasure of, e.g., eating a donut or potato chips made it pos-
sible to reliably infer preferences over, e.g., playing tennis or
shopping, and vice versa. This suggests that value signals in mPFC
do not only spatially overlap, but also that the distributed pattern
is similar across our two categories of reward. This is remarkable,
since these categories differ fundamentally with respect to the
associated sensory and motivational systems. If subjective value
representation was entirely linked to specific properties of a stim-
ulus this should not be possible.

Our activity category comprises items that are normally not
traded and hence not priced. Therefore, our finding cannot be
explained by cognitive processes that merely reflect learned mar-
ket prices. Further, in contrast to previous studies on common-
scale representation of value (Levy and Glimcher, 2011;
McNamee et al., 2013), we refrain from using any type of mone-
tary valuation task. It is thus unlikely that the similarity of value
signals we observe across different categories is artificially caused
by a task that encourages subjects to evaluate items in a common
reference frame, such as monetary value or a Likert scale. Instead
our data suggest that a common scale representation of subjective
value is an inherent feature of our valuation system, much like the
psychological concept of utility, first envisioned by Jeremy Ben-
tham as anticipated pleasure or general satisfaction (Kahneman
et al., 1997; Bentham, 2007).

Interestingly, we find that to a certain extent this representa-
tion is common even across individual brains, as is evident in the
significant across-participant predictions. A machine-learning
algorithm trained on brain patterns of one individual, when ap-
plied to the brain patterns measured in another participant, pre-
dicted subjective preferences above chance level. Although
prediction power was considerably lower, knowing the neuronal
pattern that is associated with imagining the pleasure of, e.g.,
eating a donut or playing tennis for Participant A makes it in
principle possible to infer subjective preferences over these items
for Participant B.

To explore the localization of the abstract value signals that
enabled the across-category predictions, we mapped the voxels
which were informative in predicting subjective value for both
reward categories. Note that we did not restrict this analysis to a
small region, but considered voxels from the entire frontal cortex
of each individual participant. Given this large mask, it is very
encouraging that we observe clusters of informative voxels in the
mPFC in line with previous human fMRI studies (Tusche et al.,
2010; Levy and Glimcher, 2012; McNamee et al., 2013). Our mul-
tivariate analysis, however, did not reveal a cluster of voxels in the
most ventral part of the mPFC, where many previous studies
reported peak voxels. Instead, our most prominent cluster corre-
sponds well to a region reported to predict consumer choices
using a similar multivariate approach as ours (Tusche et al.,

Figure 7. Voxel-clusters resulting from univariate analysis (Talairach x, y, z � �7, 51, 30)
overlaid onto an anatomical average.

Figure 8. Prediction performance across participants. Each boxplot shows the prediction
accuracy for an SVR model trained on one subject, predicting the preferences for all 120 items for
the other seven subjects. Boxplot on the far left shows distribution of all 56 correlations ob-
tained in this way. Error bars in boxes show the median prediction performance.

Gross et al. • Value Signals Predict Preferences across Categories J. Neurosci., May 28, 2014 • 34(22):7580 –7586 • 7585



2010). This discrepancy could be due to a number of fundamen-
tal differences between classical univariate analyses and the anal-
ysis presented in this study. Whereas most previous studies used
a smoothing kernel, our results were obtained on a single-subject
level without any image filtering. The multivariate results de-
picted in Figure 6 represent the probabilistic overlap instead of a
multisubject aggregate. Neighboring voxels that are usually
smoothed in common approaches might therefore not survive
our set inclusion threshold. Discrepancies between univariate
and multivariate analyses could also arise because of distributed
patterns in the data that influence the machine learning algo-
rithm when picking the most informative voxels, but leave the
univariate procedure unaffected (Haufe et al., 2014).

In addition to the medial prefrontal cortex, we find voxels
carrying abstract value signals in the ACC. This is interesting,
because value signals in the ACC have been reported in monkey
studies using single-cell recordings (Wallis and Kennerley, 2010;
Kennerley et al., 2011; Cai and Padoa-Schioppa, 2012), but not
typically in human fMRI studies. The fact that we do observe
value-signals in the ACC is likely due to the differential sensitivity
of multivariate analysis compared with univariate analysis (Wal-
lis, 2011), and suggests that abstract value signals are not limited
to the mPFC.

In contrast to previous studies (Levy and Glimcher, 2011; Mc-
Namee et al., 2013), our tasks were of entirely hypothetical nature
and without any reference to a monetary or another numerical
frame. This design allowed us to employ a wide range of fairly
abstract stimuli, and minimized the possibility that subjects eval-
uate items of different categories in terms of an externally im-
posed reference frame. It might still be argued that the revealed
patterns are not generalizable to value computations during real
everyday decisions. Previous research has shown, however, that
imagined and experienced rewards elicit overlapping patterns
(Bray et al., 2010). This suggests that hypothetical evaluation and
evaluation during actual choices rely on similar mechanisms.

The possibility remains that subjects used their own reference
frame regardless of the instruction to focus on the pleasure they
would derive from an item. Such a reference frame could be, for
example, the minimum/maximum pleasure they can imagine,
and although unlikely for our activities category, it is even con-
ceivable that subjects might spontaneously adopt a monetary
evaluation scheme. Our across subjects predictions however pro-
vide evidence that even if this is the case, the value signal contrib-
uting to our models is abstract enough to generalize over such
subject specific strategies. Future research could further clarify
this question by refraining from giving any task instructions like
imagining pleasure, or even using a distractor task while display-
ing different items, an approach that has been used for example
by Tusche et al. (2010).

To conclude, our results provide strong evidence for the exis-
tence of abstract value signals in the mPFC and also the ACC.
These value signals are comparable even for fundamentally dif-
ferent and immaterial categories of reward, and in principle, can
be used to predict choice.
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